Fabrication of electrospun poly(d,l lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering

نویسندگان

  • Lila Nikkola
  • Tatjana Morton
  • Elizabeth R. Balmayor
  • Hanna Jukola
  • Ali Harlin
  • Heinz Redl
  • Martijn van Griensven
  • Nureddin Ashammakhi
چکیده

BACKGROUND Adaptation of nanotechnology into materials science has also advanced tissue engineering research. Tissues are basically composed of nanoscale structures hence making nanofibrous materials closely resemble natural fibers. Adding a drug release function to such material may further advance their use in tissue repair. METHODS In the current study, bioabsorbable poly(D,L lactide-co-glycolide)80/20 (PDLGA80/20) was dissolved in a mixture of acetone/dimethylformamide. Twenty percent of diclofenac sodium was added to the solution. Nanofibers were manufactured using electrospinning. The morphology of the obtained scaffolds was analyzed by scanning electron microscopy (SEM). The release of the diclofenac sodium was assessed by UV/Vis spectroscopy. Mouse fibroblasts (MC3T3) were seeded on the scaffolds, and the cell attachment was evaluated with fluorescent microscopy. RESULTS The thickness of electrospun nanomats was about 1 mm. SEM analysis showed that polymeric nanofibers containing drug particles formed very interconnected porous nanostructures. The average diameter of the nanofibers was 500 nm. Drug release was measured by means of UV/Vis spectroscopy. After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days. During the evaluation of the release kinetics, a material degradation process was observed. MC3T3 cells attached to the diclofenac sodium-loaded scaffold. CONCLUSIONS The nanofibrous porous structure made of PDLGA polymer loaded with diclofenac sodium is feasible to develop, and it may help to improve biomaterial properties for controlled tissue repair and regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering

Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generat...

متن کامل

Electrospun Poly(lactide-co-glycolide-co-3(S)-methyl- morpholine-2,5-dione) Nanofibrous Scaffolds for Tissue Engineering

Biomimetic scaffolds have been investigated in vascular tissue engineering for many years. Excellent biodegradable materials are desired as temporary scaffolds to support cell growth and disappear gradually with the progress of guided tissue regeneration. In the present paper, a series of biodegradable copolymers were synthesized and used to prepared micro/nanofibrous scaffolds for vascular tis...

متن کامل

Influence of Additives on Fabrication and Release from Protein Loaded Microparticles

       The purpose of this study was to investigate the effect of additives, poly(ethylene glycol) (PEG) 1450, poloxamer 407, polyvinyl alcohol (PVA) and sodium chloride in order to improve physico-chemical characteristics, encapsulation efficiency and in vitro release of bovine serum albumin, form poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles prepared by the w/o/w solvent evaporation...

متن کامل

Using poly(lactide-co-glycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea.

AIMS To assess the potential of electrospun poly(lactide-co-glycolide) membranes to provide a biodegradable cell carrier system for limbal epithelial cells. MATERIAL & METHODS 50:50 poly(lactide-co-glycolide) scaffolds were spun, sterilized and seeded with primary rabbit limbal epithelial cells. Cells were cultured on the scaffolds for 2 weeks and then examined by confocal microscopy, cryosec...

متن کامل

Effect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model

Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes. HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015